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Droplet theory in low dimensions: Ising systems in an 
ordering field 

J S Sim and A D Bruce 
Department of Physics, University of Edinburgh, U K  

Received 19 September 1984 

Abstract. We extend the microscopic droplet theory of Ising systems, developed recently, 
to incorporate the effects of an ordering field. The theory yields a free energy which is the 
solution of a renormalisation group equation describing droplet nesting, and which has a 
full scaling form. The behaviour near the coexistence curve is investigated and found to 
display the essential singularity suggested by primitive droplet models, but with parameters 
renormalised in a physically intelligible way. The droplet population function implied by 
the theory is parametrised in a simple way, in space dimension d = 2, to yield predictions 
for various thermodynamic properties, including the equation of state, which are found to 
be in fair accord with series-based results. The structure of the field-dependent droplet 
number distributions is investigated and contrasted with the forms assumed in phenomeno- 
logical droplet theories. The domain of validity of the theory is assessed. It is concluded 
that the theory fails to describe (sufficiently) large droplets in the presence of a finite field, 
and is thus in principle trustworthy only in a region close to the coexistence curve. 

1. Introduction 

In a recent paper (Bruce and Wallace (1983), hereafter referred to as I )  it was shown 
how one can construct an explicit and analytically tractable theory of the universal 
configurations underlying critical point phenomena in low-dimensional Ising systems. 
The theory represents the natural extension 10 space dimensions d = 1 + E of kink-based 
theories of the d = 1 Ising universality class (Bishop et a1 1980). In d = 1 + E the basic 
configurational building block is a ‘droplet’ of one phase (Fisher 1967). The typical 
droplet is not spherical: deviations from the spherical state give the droplet surface 
area the character of a ‘fractal’ (Mandelbrot 1983) whose dimension prescribes the 
critical point thermal eigenvalue (the critical exponent 1/ v). The typical droplet is 
not homogeneously ordered either: deviations from the homogeneous state, realised 
as ‘nested’ droplets (Kadanoff 1976), give the droplet volume a fractal character, with 
a dimension which identifies the ordering field eigenvalue (effectively the ratio p /  v). 
Both the fluctuations from the spherical state, and the fluctuations from the 
homogeneous state, are controlled by the statistical mechanics of surface tension, which 
can be handled in a controlled way by renormalisation group methods in 1 + ~  
dimensions. 

The work reported in I was confined to the line of two-phase coexistence (the 
‘zero-field’ limit, in the language of magnetism which we shall employ here). In the 
present paper we extend the analysis to include the effects of an ordering field. The 
motivation is fourfold. 
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1120 J S Sim and A D Bruce 

Firstly, the extended analysis allows us to establish in a unified and systematic 
fashion the forms of the various field-derivatives of the free energy (specifically the 
order parameter and its susceptibility) whose critical behaviour on the coexistence 
curve was obtained in I with the aid of a novel, but perhaps less than transparent, 
‘decoration’ argument. 

Secondly, the analysis developed here allows us to establish the analytic structure 
of the free energy in the vicinity of the coexistence curve and critical point: we are 
thus able to determine the effects of critical fluctuations on the essential singularity 
(as a function of the ordering field) found in thermodynamic quantities in the subcritical 
region (Giinther et a1 1980, Lowe and Wallace 1980) and believed to control nucleation 
phenomena (Langer 1967). 

The third motivation for the present study is to shed some light on the domain of 
validity of the droplet-based theory. As noted in I, while the theory remains controllable 
for any T < T,, it undoubtedly breaks down for T > T, in zero field. It is thus natural 
to enquire in what region of the field-temperature plane the theory can be trusted. 

Finally the incorporation of an ordering field is a prerequisite for dealing with a 
number of potentially interesting extensions of the theory, most notably the problem 
of percolation, which will be addressed in a separate paper (Schmittmann and Bruce 
1985). The layout of the present paper is as follows. 

In § 2 we determine the configurational weight (partition function) for a single 
droplet of one phase embedded in the opposite phase, incorporating into the analysis 
a field which couples to the droplet volume. In § 3 we show how this single-droplet 
partition function may be utilised to determine the full partition function and free 
energy of a many-droplet assembly. In contrast to the zero-field case treated in I, 
where the free energy emerges in a simple and explicit fashion, in the presence of a 
field we find that the free energy is prescribed implicitly as the solution of an integral 
equation. In  § 4 we establish analytically the thermodynaic properties implied by the 
form of the free energy, demonstrating its scaling form, confirming the zero-field results 
of I for the field derivatives, and examining the effects of fluctuation renormalisation 
on the essential singularity. We then proceed to an explicit numerical study of the 
thermodynamic behaviour (notably the equation of state) in the particuar case d = 2 .  
In  § 5 we determine the form of the droplet number distribution, examining its 
implications for the validity of phenomenological droplet theories (Binder 1976). 
Finally, in § 6, we assess the theory we have developed, giving particular attention to 
its domain of validity in the field-temperature plane. 

2. The single droplet partition function in finite field 

As in I ,  we study the continuum limit of the fixed-length-spin Ising model. This model 
realised as a field theory is analytically more tractable than its lattice counterparts and 
we expect it to display the same (universal) configurational features as those of the 
lattice models. In the continuum limit a droplet is a connected region of space with 
an intrinsically sharp closed boundary separating the two ordered phases. We assume 
that the statistically dominant droplets are almost hyperspherical: it was proved in I 
that this assumption is at least self-consistent near dimension d = 1 and it turns out 
that the presence of an ordering field does not affect its validity. 

We can thus characterise the size and shape of a droplet by the single valued 
function f ( v )  which specifies the deviation of the droplet surface from a reference 
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hypersphere of radius R (I, figure 1). Here 77 specifies a direction from the centre of 
the reference droplet. The essential geometrical features of a droplet are its volume 
and surface area. The volume is given by (equation (12.3)) 

V =  V ( f ) = d - '  dR ( R + f ) d  (2.1) 1 
where dR is the element of solid angle in d dimensions. The surface area is given by 
(equation (12.7)) 

.d = d ( f )  = dR ( R  +f)d-'[ 1 +;( R +f)-'( L,,f)2]l'2 (2.2) i 
where the L,  are the angular momentum operators in d dimensions. The field f has 
a decomposition in the d-dimensional spherical harmonics Y,,,( v), which are the 
eigenfunctions of L': 

Within the continuum framework the dimensionless configurational energy, 2, of 
a sigle droplet relative to the zero-droplet ground state is uniquely prescribed by the 
droplet area and volume: 

2= T i ' & +  (-1)Q2hV. (2.4) 

The first term represents the surface ('broken bond') energy; T i '  is a measure of the 
surface tension. The second term represents the field energy: a = 1 or 2 according to 
the phase of the droplet; phase 1 is favoured by a positive external field, h > 0. 

The single-droplet partition function ( SDPF) is written as a functional integral over 
all fields f: 

The arguments supporting the choice of measure in (2.5) are given in appendix 1 
of I where it was shown that the implied normalisation of Z, is consistent with a 
zero-droplet partition function that is unity. 

The evaluation of the SDPF in zero field was described in detail in I .  Here we shall 
summarise the results and indicate how they are modified by the presence of the 
ordering field. In zero field we found for a droplet of phase a embedded in phase 6 
(equation (14.1 ) )  

Z,,,(h =0)  = V, dR u - ' ( R ) 4 ( R ,  5). (2.6) 

Here V, is the volume of the embedding phase, u (R)  = S d R d / d  is the volume of a 
hypersphere of radius R and 5 is the correlation length, with a critical behaviour 
prescribed by equation (I3.28b). The function $ ( R ,  5) has the properties 

1 
( 2 . 7 ~ )  
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The parameter +bo is a universal constant, exponentially small in the parameter E = d - 1 
(equation (14.4d)). The parameter co is a dimensionless constant which effectively 
prescribes the universal relationship between the dimensionless surface tension, c i ' t - ' ,  
and the correlation length 5 (Bruce 1984). 

It  is straightforward to extend these results to incorporate the field term in the 
configurational energy (2.4). One must first recall from I that the integrations with 
respect to the 1 = 0 and 1 = 1 coordinates in equation (2.5) have to be treated by collective 
coordinate methods: the integration with respect to the 1 = 0 mode yields an integration 
with respect to R, with a trivial Jacobian; the integration with respect to the d 1 = 1 
modes becomes an integration with respect to the centre of the droplet (yielding the 
embedding volume) modulo a Jacobian which is in general non-trivial (i.e.f dependent) 
but which turns out to be effectively a constant at both one- and two-loop levels 
(Schmittmann 1984). One then finds that the finite-field partition function may be 
written in the form 

Z, , , (h)= V, i dRu-'(R)+b(R, [)(exp(-(-1)^2hd-' 5 dR[R+f(n)] ' ) ) '  0 ( 2 . 8 ~ )  

where 

(2.86) 

The prime denotes omission of the 1 = 0 and 1 = 1 spherical harmonic contributions to 
f (7 ) ;  the subscript zero indicates that the average is to be evaluated in the zero-field 
ensemble. Now 

= u ( ~ ) + ~ ~ d - 2  d ~ f ' ( ~ ) + ~ C f ~ )  i (2.9) 

where we have used the fact that the integral whose integrand is linear in f vanishes 
in the absence of the 1 = 0 component of the field. Writing 

(exp( -(- 1 ) " 2 h ~  dR Rd-2f2(q))) '  = e x p [ - ( - 1 ) " 2 h ~ S ~ R ~ - ~ ( f * (  t7))b+0Cf4)] 
0 

(2.10) 

and utilising equation (14.18) for the variance ( f 2 ( v ) ) ,  we find that 

(exp (-( - 1),2hd-' 1 dR [ R  +f(,)]'-'))' = exp{[-(-1)"2hu(R)[ 1 + O( E ~ ) ] }  
0 

(2.1 1) 

implying that the fluctuation corrections to the 'classical' field-dependent weighting 
factor are negligible in low order. The SDPF in finite field thus assumes the simple form 

dR u-'(R)+b(R, 6) exp[-(-1)"2hu(R)]. (2.12) 
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3. The multi-droplet partition function 

We now proceed to use the results of § 2 to determine the thermodynamic properties 
of the full many-droplet assembly, taking account of droplet nesting, and droplet 
interaction, to the extent that the latter is expressed in excluded volume effects. The 
key simplification in the analysis is the dilute droplet boundary approximation which 
was explained and justified in I and which facilitates a simple renormalisation group 
type of argument yielding an equation for the free energy of the multi-droplet ensemble. 
The domain of validity of the argument in the presence of a field requires further 
consideration which we defer to § 6 .  

We consider an Ising system which consists of a hyperspherical volume V = d - ' S d L d  
containing droplets o f  both phases and of all scale sizes intermediate between L 
(in practice 5) and some arbitrary minimum Lo. The partition function for this system 
is written as a sum over the set of all distinct configurations, { c (  L, Lo)} ,  of all possible 
droplets of all possible shapes: 

where % [ c (  L, L,)] is the dimensionless energy associated with the configuration 
c ( L ,  Lo).  We proceed, as in I, by separating out the contribution made to this sum by 
the smallest droplets in the assembly-those with scale sizes between Lo + dLo and Lo: 

Z(h ,  L, Lo, 5) = c c 
i c l  L . L o + d L ) }  { c (  h + d L o , L o i ) *  

xexp{-X[c(L, Lo+dLo)l-  X[c(Lo+dL,, LJ I}  (3.2) 

where {c(L,+dL,, Lo)}* means the set of configurations of droplets with scale sizes 
between Lo+dLo and Lo which are consistent with the configuration c ( L ,  Lo+dLo) of 
larger droplets. We now invoke the dilute droplet boundary approximation: we assume 
that the volume, V,[c(L, L,+dL,)], occupied by droplets of phase CY in the configur- 
ation c (  L, Lo+ dL,) is such that there is a high probability that a droplet of scale size 
-Lo embedded in this volume is located far from a droplet boundary. We may thus 
neglect the constraints on the configurational sum over the Lo-sized droplets originating 
in the finite and ramified character of the volumes V,[c(L, L,+dL,,)] which they 
occupy. The problem posed by this configurational sum is then essentially that 
addressed in § 2. Specifically, with the aid of equation (2.12), we find 

C exP{-R[c(Lo+dLo, Lo111 
i c ( L o + d L o ,  L o ) ) *  

= 1 + V2[c(L ,  Lo+dLo)]u- '(Lo) exp[+2hu(Lo)l$(Lo, 5) dLo 

+ V ~ [ C ( L ,  L,+~L,)]u-'(LO) exp[-2hu(Lo)]I/J(L0, 5) dLo+O(dLo)'. (3.3) 

The first term is the contribution from configurations c( Lo + dLo, Lo) containing no 
droplets, the second is from configurations containing one droplet of phase 1 only and 
the third is from configurations containing only one phase-2 droplet. Substituting (3.3) 
into (3.2) gives 

Z ( h ,  L, Lo, 5) 
= exp{-%[c(L, Ln+dLo)l) 

(c( L , L o + d L o l )  

X { l +  V,Cc(L, Lo+dLo)l~- '(Lo) ~ ~ P [ - ~ ~ U ( L O ) I + ( L O ,  5) dLo 

+ V,[C(L, ~ o + d ~ o ) l ~ - ' ( ~ o )  exp[+2h4Lo)lI/J(Lo, 5) dLo} ( 3 . 4 ~ )  
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implying 

In =(" L' Lo' 
= -u-'(Lo)cL(L,, 5)(Vl  exp[-2hu(Lo)l+ V, exp[2hu(Lo)]),, (3.4b) 

where ( ) ro  denotes averaging over the canonical ensemble with infrared cut-off 
(minimum droplet size) Lo. 

Noting the identities 

LO 

exp{-Wc(L,  R)IH Vdc(L, R ) I -  V2[c (L ,  R)1} = ( a / a h )  exp{-Wc(L, RI11 (3.5u) 

we find that equation (3.4) may be recast in the form 

a ~ ( h ,  L, L,, 6 )  
a LO 

Integrating this equation with the boundary condition 

~ ( h ,  L, L, 6 )  = e h v  

we find that the dimensionless free energy 

F ( h ,  L, Lo, 5) Z(h,  L, Lo, 5) 
obeys the integrodifferential equation 

F ( h ,  L, Lo, 6 )  = V d R  u- ' (R)$(R,  6 )  

(3.5b) 

(3.8) 

(3.9) 

Finally, taking the thermodynamic ( L / [  --f a?) limit we obtain for the free energy density 
f =  V- IF  the representation 

f(h, Lo, 6 )  = h + [  d R  u-'(R)cL(R, .$){cosh[2hu(R)]-Q(h, R, 5) sinh[2hu(R)]} 

where (cf equation ( 3 . 5 ~ ) )  

X 

L,, 

( 3 . 1 0 ~ )  

(3.10b) 

represents the order parameter for an assembly with minimum droplet size R. 
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These equations constitute the basic results of this paper. In the limit of zero field 
they simplify to give the fully explicit representation of the free energy (equation (15.8)) 

(3.1 1 )  

This simplification may be traced to the fact that, in zero field, the two phase volumes 
V, and V, appearing in (3.3) carry identical weightings: in view of the sum rule (3.5b) 
the R H S  of (3.3) is thus independent of the specific conjguration c(L ,  Lo+dLo)  of the 
larger droplets. In the presence of a field, however, these two terms can no longer be 
combined in this fashion: the result is the implicit equation (3.10), whose properties 
we now turn to examine. 

4. Thermodynamic properties 

We have established that the free energy of the many-droplet assembly obeys an  implicit 
integral equation, (3.10). In  this section we investigate the properties of the free energy 
implied by this equation recast in differential form by taking the derivative with respect 
to the minimum droplet scale size, Lo: 

a Lo Lo' ')= - u - ' ( L ~ ) + ( L ~ ,  ()(cosh[2hl;(Lo)]- df'h' a h  Lo' ') sinh[2hc(Lo)]). (4.1) 

Specifically, in § 4.1, we shall look for a solution to this equation in the form of a 
power series in the external field. In the process we shall establish that the free energy 
displays a properly scaling form in the critical region. From the low-order terms in 
the series solution we shall determine the zero-field forms of the free energy, the order 
parameter and the susceptibility; these results corroborate the predictions made in I 
on the basis of rather different arguments. In the form of the higher-order terms we 
shall find the signature of an  essential singularity on the coexistence curve: these results 
substantiate the predictions of a subcritical droplet model calculation by Giinther et 
a1 (1980) and  refine them by the incorporation or critical fluctuations (droplet nesting) 
whose effect, it transpires, is simply to introduce a physically intelligible &dependence 
into the basic parameters characterising the singularity. 

In § 4.2 we shall turn our attention to the particular case of two dimensions. We 
shall establish, numerically, the implications of equation (4.1) for the equation of state 
and other characteristics of the d = 2 Ising universality class, comparing the predictions 
with the results of series expansion studies. 

4.1. Series solution for the free energy 

We consider the low-field expansion for the free energy, 

In the critical region we expect the free energy to assume a scaling form, so we make 
the ansatz 

f (Lo, 5) = 5 Lo/ 0 1 %  (Lo/ 5) (4.3a) 
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with 

(4.3b) 

Substitution of (4.2) and (4.3) into the differential equation (4.1) shows that the 
proposed scaling form is correct and that the functions f n  ( Lo/ 5) satisfy the differential 
equations 

fh(Z) = $( z)z- 'v- ' (z)  - [ 2 v (  z)]"s,,,&-" 

&"( z)fn~2,(z)[2v(z)]2"' 
+ n !  2 

O < l < , , / 2  ( n  - 2 1 -  I)!  (21+ I ) !  
(4.4a) 

where 

n even, 
n odd. 

These differential equations have boundary conditions which are determined by the 
form of the free energy outside the critical region, where Lo >> 5. From (3.10) one sees 
that, to within exponentially small corrections, 

f(h, Lo, 5) = h, Lo >> 5. (4.4b) 

Equation ( 4 . 4 ~ )  then yields for the n = 0 term (the zero-field free energy) the result 

(4.5a) 

This equation recovers the zero-field free energy determined in I (equation (15.8)) 
where it was shown that the implied critical behaviour is generally of the form (cf 
however, the d = 2 case discussed in Q 4.2.1) 

f(h = 0, Lo, 5) = 5-dfs+fNs (4.56) 

where Fs is a constant andf,, contains contributions which are analytic in the reduced 
temperature. 

Setting n = 1 we find from equation ( 4 . 4 ~ )  that fi ( z )  = 0 whence we conclude from 
(4.2), (4.3) and (4.4b) that the function o ( L o / 5 )  defines the zero-field order parameter 

( 4 . 6 ~ )  

again recovering a result of I .  The implied critical behaviour follows from the definition 
(4.3b) and the properties (2.7) of the scaling function 4: 

a h  =o,  Lo, 5 ) = a f ( h ,  Lo, 5)/ahlh=o= O(L0/5)  

a h  = 0, Lo, 5) - 5-p /" ,  P / *  = WO. (4.6b) 

Next we observe that the n = 2 term in the expansion (4.2) defines the zero-field 
susceptibility 

In  the small-z regime r 2 ( z )  tends to a finite limiting value which follows from ( 4 . 4 ~ )  
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and (4.4b): 

(4.7b) 

(4.7c) 

again recovering a result of I, where ,y was obtained by considering fluctuations in the 
ordering coordinates. The general structure of the series solution (4.2), in the scaling 
regime, is now apparent. Utilising (4.5b) and exploiting the face that, quite generally, 
the functions f,,(z) have finite z = O  limits (for n >  I ) ,  we see that 

which displays the anticipated scaling form 

to within corrections which are analytic in the reduced temperature. 
Returning now to the explicit structure of the coefficients in the expansion (4.2) 

we note that, for n > 2, the differential equations (4.4a) become progressively more 
complicated: in general the equation for the nth-order coefficient involves the behaviour 
of all the ( n  - 21)th coefficients. We may, however, establish an approximate solution 
by noting that, for n > I ,  the functions f, are all formally of the order of the small 
parameter we then systematically discard those terms in ( 4 . 4 ~ )  which are of order 
+hi. We have checked that this approximation does not invalidate the expressions for 
the asymptotic (large-n) behaviour of the expansion for the free energy, whose form 
we now proceed to establish. 

Within the stated approximation the differential equations ( 4 . 4 ~ )  assume closed 
decoupled forms which can be trivially integrated to give 

f n ( 0 )  = (-2)" lox dz $ ( z ) z - ' u " - ' ( ~ ) .  (4.9) 

Now for large n the dominant contribucons to the remaining integral come from a 
region where z is sufficiently large that $(z) may be approximated by its asymptotic 
form ( 2 . 7 ~ ) .  Recalling (4.8a), one then readily finds that the coefficient of h" in the 
expansion of the free energy is 

(4.10) 



1128 J S Sim and A D Bruce 

where we have used the asymptotic properties of the r function. The discarded terms 
include contributions originating in the corrections to the asymptotic behaviour of the 
function $ ( z ) .  This result may be usefully compared with that yielded by analysis of 
a Landau-Ginzburg droplet model in the subcritical region (Giinther et a1 1980, Lowe 
and Wallace 1980), according to which the coefficient of the nth-order term has the form 

with 

~ = d - l ,  b E (3  - d ) d / 2 ,  (4.1 1 b )  

while A and  B are unknown constants. In the 'dilute' (subcritical) theory the coefficients 
(4.1 l a )  are obtained, through a dispersion relation, from the imaginary part of the 
analytic continuation of the free energy (across the coexistence curve), which has the 
asymptotic form for small Ihl 

Imf (h , a rg  h = + r ) = - B l h l h  exp{-Alhl-"[l+O(h2)]} (4.12) 

Comparison of (4.10) with (4.1 l a )  reveals consistency both as regards the leading 
n-dependence of the coefficients themselves a n d  as regards the next to leading, O( I /  n ) ,  
term in the ratio of successive coefficients. Matching the expressions prescribes for A 
and B the explicit forms 

( 4 . 1 3 ~ )  

- C d [ t d Q ( h  = 0,  LO, 6)Ib. (4.13 b )  

These results merit some comment. Firstly we note that, though A and  B are non- 
universal, their non-universality resides simply in the two usual non-universal scale 
factors (implicit in the definitions of the order parameter and the correlation length): 
accordingly the coefficients of the powers of 6 and Q appearing in (4.13a, b )  should 
be universal. Secondly we observe that the net 6 dependence which the coefficients 
display in the critical region is, of course, just such as to ensure that (4.12) exhibits 
the expected scaling behaviour. Thirdly, to expose the physical significance of the 
structure displayed by equation ( 4 . 1 3 ~ )  we recall that, within the framework of the 
dilute droplet theory leading to equation (4.12), the parameter A is found to be such 
that the argument of the exponential in (4.12) is simply the (dimensionless) freed 
energy of the critical droplet for nucleation (Giinther et a1 1980); this critical droplet 
free energy is defined as that which maximises the sum of the interfacial free energy 
of a single classical droplet, and  the free energy associated with its interactions with 
a field favouring its presence. Equation ( 4 . 1 3 ~ )  shows that this interpretation carries 
over into the critical region with two simple caveats. Specifically, one must take account 
of the renormalisation of the interfacial tension: the factor c;'['-~ defines the critical 
surface tension in the present framework (cf equation ( 2 . 7 ~ )  et seq). One must also 
allow for a renormalisation of the field energy: the factor of Qi--d ensures that the 
free energy cost (per unit critical droplet volume) has magnitude hQ, rather than simply 
h. Equation ( 4 . 1 3 ~ )  is thus quite transparent. Indeed such a result has recently been 
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conjectured by Binder (1984) in a study of nucleation barriers, and by H a m s  (1984) 
who has shown that with its aid one may understand aspects of series expansion studies 
of the d = 2 lattice Ising model, effectively determining the parameter A (Baker and 
Kim 1980). The critical behaviour of the amplitude A is found to be in a m r d  with 
equation ( 4 . 1 3 ~ )  (using exact results for 6 and Q ) ,  both as regards the index of the 
implied power law and as regards the amplitude (universal in the sense indicated 
above). In fact Harris has found numerical evidence to suggest that equation ( 4 . 1 3 ~ )  
actually holds even outside the critical region, provided it is generalised to allow for 
an anisotropic surface tension (which is no longer related to the correlation length in 
the simple power-law fashion implicit in ( 4 . 1 3 ~ ) ) .  

The structure of equation (4.136) is rather less transparent and, indeed, is not 
prescribed by the phenomenological arguments of Binder (1984) and Harris (1984) 
which do not incorporate the effects of the droplet zero modes (radial distortions and 
translations) which control its form. We shall examine the numerical value of the 
coefficient B implied by this result in the course of the explicit numerical studies of 
the d = 2 case. to which we now turn. 

4.2. Numerical studies in d = 2 

Although the droplet theory presented here is formally justifiable only in d = 1 + E ,  it 
is, nevertheless, useful to consider its application to d = 2 where its reliability may be 
assessed by comparison with established data for the two-dimensional Ising model. 
This is the task we now address. 

The key to this programme is the droplet population function 6 whose limiting 
characteristics are defined in equations (2.76, c )  but which must now be fully prescribed. 
Although a full two-loop calculation of this function now exists (Schmittmann 1984), 
we have chosen to utilise the one-loop form (prescribed by equations (I4.3), ( 3 . 2 8 ~ ) )  
which is particularly tractable when extrapolated to d = 2. Explicitly we find 

$(z)  = t/t0(1 + T,z/c,)~’* exp(-2.rrz/co). (4.14) 

In obtaining this form we have made the assigments I/ = 1 (and E = I )  in equation 
(13.28~).  In the same spirit the parameter t j 0  is assigned the value implied by the 
identification (4.6b), namely + 0 = P / 2 v = & .  The parameter co is fixed by a rather 
general argument which relates the surface tension and the (exponential fall-off) 
correlation length in d = 2 (Bruce 1984) and which yields co= 2. The remaining 
parameter in equation (4.14), T,, has no direct counterpart in d = 2: it cannot be 
identified with any unambiguously defined measure of the critical temperature. In 
assigning its value we thus have two choices. Firstly we can, of course, resort to the 
d - 1 expansion which yields T, = E + O( E ’ ) .  Alternatively we can choose to assign a 
value so that the droplet theory correctly reproduces some other universal characteristic 
of the d = 2 Ising model. We have adopted the latter strategy: the specific universal 
observable to which we have chosen to match the droplet theory, in this way, is the 
first of those we now consider. 

4.2.1. Two scale factor universality amplitude. Consider first the behaviour of the 
zero-field free energy density. According to equation ( 4 . 5 ~ )  (in d = 2) 

X 

f ( h = O ,  L , , f ) = ~ - ’ t - ~ {  d ~ z - ~ $ ( z ) .  
Lo/  t 

(4.15) 
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Now equation (4.14) shows that $ ( z )  has a simple Taylor series expansion around 
z = O ;  this is a specific corollary of the fact that Y =  1 in d = 2  (cf the form of the 
general expansion of $, noted in equation ( 1 4 . 4 ~ ) ) .  Thus writing 

(4.16) 

we find immediately from (4.15) that the zero-field free energy density can be written 
as a sum of two terms, one  of which is analytic, and  the other non-analytic in 6 (and  
thus the reduced temperature t ) .  Explicitly the non-analytic piece has the form 

f ,  = 9 2 ~ - ’ . . - 2  In 6. (4.17) 

Noting that, in veiw of the defining relation (3 .8) ,  this result is expressed in units of 
-kBTc,  we see that the singular part of the specific heat capacity (in units of kB) is 

C, = a2h/at2 = -2+2 In t / [ x ( ~ t ) ~ ] .  (4.18) 

We may thus identify the dimensionless parameter 

x = -( t t )2Cs/ ln  t 

as 

(4.19) 

(4.20) 

The universality of this parameter, implied by the universality claimed for the droplet 
population function 6, manifests the universal link between thermodynamic and 
correlation length scales, originally advanced by Stauffer et a1 (1972). For the d = 2 
Ising model the exact result, noted by these authors, can be written in the form 

X =  1/8n=2+,/ ir  (4.2 1 ) 

where we have again made the identification (4.66).  We have also (in contrast to 
Stauffer er a l )  adopted the convention (consistent with the assignment c, = 2, implicit 
in (4.20)) that the correlation length 6 appearing in (4.19) be taken as the exponential 
fall-off correlation length (rather than the second moment correlation length). 

The value of X implied by equation (4.20) depends sensitively upon the value 
assigned to the parameter T,. Accord with the exact result (4.21) is obtained with 
T, ;= 1.8. This is the value we shall adopt throughout the remaining numerical studies 
reported below. 

4.2.2. The essential singularity amplitude. We now return briefly to consider the implica- 
tions of equation (4.136), in the light of the parametrisation (4.14). The data of Baker 
and  Kim (1980) d o  not allow us to check fully the scaling properties of the coefficient 
B prescribed by this result. By utilising their data (at the higher o f the  two temperatures 
which they study) one may however infer from (4 .13b) a value for the parameter +(=): 

this matching procedure yields $ir) - 0.12. This result is subject to substantial (but 
not readily quantifiable) uncertainties since the magnitude of the prefactor B will 
certainly be influenced by departures from spherical symmetry in the critical droplet; 
such effects are, of course, absent from equation (4.136) which describes asymptotic 
(isotropic) behaviour. In any event, this inferred value of +(=) may be compared with 
that implied by the parametrisation (4.14). Utilising equation ( 2 . 7 ~ )  we find that 
*L(W = $o( T , / c , ) ~ ’ ~  - 0.053, where we have made the T, assignment discussed in § 4.2. I .  
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In view of the considerable uncertainties inherent in the two estimates we feel that the 
comparison is not discouraging. 

4.2.3. The equation of state. Finally we consider the equation of state which is prescribed 
by the differential equation following from equations (3.106) and (4.1): 

-[2hu( Lo)]-’ sinh[2hu( Lo)] 
a Lo 

( 4 . 2 2 ~ )  

The boundary condition for this equation is 

Q(h, Lo, 5) = 1, L o =  L, (4.22b) 

where L is a length scale large compared with 5. With $ ( z ) ,  and the parameters it 
contains, prescribed as we have indicated, we have integrated equation ( 4 . 2 2 ~ )  at fixed 
6 and for a range of h(>O).,from Lo= L > > 5  (in practice L/5-17),  into the critical 
region characterised by values of Lo small compared with 5. The integration procedure 
is straightforward except for the use of one approximation which merits explicit 
comment since it is a point to which we shall subsequently have occasion to return. 
The approximation in question is motivated by the form of the solution to equation 
( 4 . 2 2 ~ )  yielded by iteration in powers of $. To leading non-trivial order we find 

aQ(h’ Lo’ ‘)= -2L;’$(?) exp[-2hv(Lo)][l+O($)], 
a LO 

(4.23) 

The form of this result suggests that we impose on ( 4 . 2 2 ~ )  the additional boundary 
condition 

(4.24) 

where h,= h,( Lo, 5) is such that 

$(Lo/&) exp[-2hCv( Lo)] = lo-&. (4.25) 

The parameter k (in effect the cut-off field h,) has to be chosen to be sufficiently large 
that the errors introduced by the truncation (4.24) are small (on the scale of the desired 
accuracy) and yet sufficiently small that we avoid overflow in the hyperbolic function 
(in 4 . 2 2 ~ )  at large fields. In practice we found it adequate to take k =4. (See, however, 
the further discussion of this choice in § 6.) 

Implementing this procedure yields confirmation that the equation of state does 
have the asymptotic (Lo >> 5) scaling form implied by equation (4.8b), namely 

Q( h, Lo, 5) = ([/ Lo)-p’”& h(d-P’”Lf’”) (4.26) 

where the dependence upon the (arbitrary) inner length scale Lo is displayed explicitly. 
This length in effect determines the single non-universal scale characteristic of a scaling 
theory in which the temperature dependence is expressed through the correlation 
length. The function o ( y )  itself is universal: its form, as prescribed by the droplet 
theory, is displayed in figure 1. 

To test this prediction we have utilised the results of series expansion studies of 
the square lattice Ising model (Gaunt and Domb 1970) which exist as Pad6 
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Figure 1. Plots of the function d ( y )  as determined by the droplet model (broken curve) 
and derived from series expansion studies of the square lattice king model (full curve). 

approximants to the function g(x) appearing in the equation of state written in the form 

h = Q;g( t Q ; ’ / P )  (4.27) 

where Q1 is the Ising order parameter and t is the reduced temperature. This equation 
can be inverted numerically to yield Q1 = QI( h, 6 ) .  The result may be written in the form 

Q,(h, 6 )  = (~/Lo)-~/YdI(h~d-P’YLoP’Y). (4.28) 

We remark that, to satisfy the conventions implicit in equation (4.26), one requires 
that the field h and the order parameter Q, in (4.28) be conjugate in the sense of 
equation (3.10b) and that the units of the correlation length 6 be those implicit in the 
free energy density: thus with Q, the magnetisation per spin, h is the reduced field 
and 6 the correlation length in units of the lattice spacing. 

The function 6, in equation (4.28) is uniquely defined when the arbitrary scale 
parameter Lo is fixed. We choose to prescribe this parameter by the requirement that 

dl(0) = d(0) ( 4 . 2 9 ~ )  

which is satisfied by 

Lo = 0.40 10. (4.29b) 

The function dI(y )  thus defined is also displayed in figure 1. Over the range shown 
it differs from our droplet calculation by no more than 2%. This level of agreement 
seems encouraging. Two caveats are, however, in order. 

Firstly it should be recalled that, in practice, our theory is not parameter free: the 
principal indices p and v, and the constant T, (all, in principle, prescribed within the 
d = 1 + E expansion) have been tuned to known behaviour in d = 2 .  Nevertheless, since 
we have not directly fitted our theory to characteristics of the equation of state itself 
(cf the purely phenomenological droplet theory of Reatto and Rastelli (1972)), the 
accord displayed in figure 1 does appear significant. 

Secondly, and more seriously, we believe that our mode of numerical solution of 
equation ( 4 . 2 2 ~ )  (specifically, our use of the auxiliary boundary condition (4.24)) 
actually camouflages a breakdown of the theory at large values of the scaling variable 
h6d-p’”. We shall return to discuss this point in P 6, where we assess the general 
trustworthiness of the theory. 
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5. The droplet number distribution function 

We now examine the function describing the distribution of droplets over scale sizes. 
The zero-field form of this function was considered in I. Like the free energy (to 
which, in zero field, the distribution function is simply related) the distribution is 
considerably more complex in the presence of an ordering field. Its form may, however, 
be prescribed by a straightforward extension of the renormalisation group arguments 
developed in 0 3. 

We denote by n, ( R ,  h, Lo, 5 )  the mean number density of droplets of phase a with 
scale sizes in the range R + R + dR. Then formally 

n , ( R ,  h, L ~ ,  5) = v- ' z - ' (~ ,  L, L ~ ,  8) C exp{-x[c(L, Lol))AQIR; c (L ,  Lo)] 
{ c (  LLO)} 

= V-'(Au(R))b (5.1) 
where A , [ R ;  c(L,  Lo)] = (dR)- '  (or 0) according to whether the configuration c(L,  Lo) 
contains 1 (or 0) droplet(s) of phase a, with scale size R + R +dR. Separating out the 
contribution to the configurational sum (5.1) made by the small droplets (as in equation 
(3.2)) we write 

h, Lo, 5) = V - ' Z - ' ( h 9  L, 5) 1 c 
{c(LLo+dLo)) (c(Lo+dLo,LO)) '  

x exp{ -X[ c( L, Lo+ dL,)] - X [ c (  Lo + dLo, Lo)]}A,[ R ; c( L, Lo)]. (5.2) 

Now suppose first of all that the droplet scale size of interest, R, lies above the range 
Lo+ Lo+ dLo. Then we may make the replacement 

A,[& c ( L ,  Lo)I=A,[R; c (L ,  Lo+dLo)I (5.3) 

in the configurational sum. The partial trace over the smaller droplets may then be 
performed to yield (cf equation ( 3 . 4 ~ ) )  

n,(R, h, Lo, 5 ) =  V-'Z-l(h,  L, Lo, 5 )  C ex~{-x [c (L ,  Lo+dLo)I) 
{ C (  L,Lo+dLo)} 

X A , [ R ;  c (L ,  Lo+dLo)]{l + V,[c(L, Lo+dLo)]u-'(Lo) 

xexP[-2hv(Lo)I+(Lo, 5) dL0 

+ V2[c(L, L O + ~ L O ) I U - ' ( L ~ )  exp[2hv(L0)1+(Lo, 5) dLol (5.4a) 

or (cf equations ( 3 . 4 ~ )  and (3.4b)) 

an,(R, h, LO, 5 ) / a L 0 =  - V-'u-'(Lo)+(Lo, 5 ) I [ ( A a ( R ) V l ) b - ( A , ( R ) ) ~ l  exp[-2hu(L0)l 

(5.4b) +[(A,(R) v2)b-(Aa(R))b( Vz)b,( vJb1 exp[2hu(L0)l). 
Utilising the trivial identity (3.5b) and recognising that (in view of ( 3 . 5 ~ ) )  

V-'[(A,(R)(V - V d ) b - ( A Q ( ~ ) ) b ( V l  - v ~ b I =  (a/dh)n,(R, h, LO, 5) ( 5 . 5 )  

we find that (5.4b) may be recast in the simple form (cf equation (3.6)) 

Now consider the limiting case where the droplet scale size of interest (more precisely, 
the range R + R + dR)  coincides with the infrared cut-off (strictly, the range Lo+ Lo+ 
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dL,). Then the replacement (5.3) is no longer valid; instead the number operator 
A m  ( R )  must be incorporated into the partial trace over the 'smallest' droplets so that 
equation ( 5 . 4 ~ )  is replaced by 

n,(R, h, R, 5) = V-'Z-'(h, L, R, 5) exp{-%[c(L, R+dR)]} 

x U-'( R)$(R, 6) V,[c( L, R + d R ) ]  exp[-( - 1)"2hu(R)] 
{ c (  L, R + d  R 1) 

= (  V,/ V),u-'(R)$(R, 5) exp[-(-1)"2hv(R)] (5.7) 

where V, = V - Vu is the volume available for droplets of phase E.  Recalling equation 
(3.106) we then obtain 

%(R,  h, R, 6)=%1+(-1)"Q(h, R t ) lu- ' (R)$(R,  5 )  exp[-(-1)"2hv(R)I (5.8) 

which then prescribes the boundary conditions for the differential equation (5.6). The 
latter equation is very similar to that satisfied by the free energy density (equation 
(4.1)) and may be treated in a similar fashion. Specifically, we write the expansion 

and make the scaling ansatz (cf equation ( 4 . 3 ~ ) )  

n,,k(R, Lo, 5) = ~ ~ ' " " ' ~ t ' ~ ~ ~ 0 / 6 ~ ~ ~ ~ ~ , k ~ ~ / 6 ,  Lo / ( )  (5.10) 

which we find is vindicated by the form of equations (5.6) and (5.8), the coefficients 
i , , k  satisfying the equation (cf equation ( 4 . 4 ~ ) )  

The functions im,k(y, z) prescribed by this equation (together with the boundary 
conditions on i,,k(y,y) following from equation (5.8)) are finite in the z+O (scaling) 
limit. Thus (cf equation ( 4 . 8 ~ ) )  

which implies the scaling form 

n,(R, h, Lo, 6) = R-"'"i,(hRd-P'"L~'u, RI[) (5.126) 

where we have made use of equations (4.6a, 6). 
This result prompts a number of comments. Firstly, it is interesting to contrast the 

role played by the inner length scale (minimum droplet size) Lo in the zero-field and 
finite-field distributions. In zero field the number distributions depend on Lo only in 
the trivial sense that n, (R, h = 0, Lo, 6) is non-zero only for Lo < R. In finite field the 
dependence upon Lo is more subtle: the decoration of a droplet of scale size R with 
smaller droplets renormalises the field energy associated with its presence, and thus 
affects the probability with which it will occur. In effect, then, the field couples to the 
net magnetic moment of the decorated droplet which (to within an L,-indeperident 
scaling function) varies as R~ ( R /  L , ) - P ' " .  
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Secondly we observe that, as a corollary of this effect, the presence of a field 
destroys the simple relationship that exists, in zero field, between the free energy 
density and the droplet distribution functions. For h = 0 we may recall from I or see 
immediately from equations (3.10a), (5.6) and (5.8) that the (dimensionless) free energy 
density is simply prescribed by the total number of droplets: 

(5.1 3 a )  

On the other hand, in the finite field one discovers that the analogous relationship 
must be written in the form (cf equations ( 3 . 1 0 ~ )  and (5.8)) 

(5.13 b )  

The right-hand side is not the integral over the true droplet number distributions but, 
rather, the distributions which would be appropriate if the dressing of the field energy 
by droplet nesting were suppressed: replacing the true inner length scale Lo by the 
running scale R has precisely this effect. (Alternatively one may employ the distribu- 
tions with the true inner length scale Lo but with the field h conjugate to droplets of 
scale size R replaced by a renormalised field h ( R ) =  h@R/()/O(L,,/(); such a 
representation is correct to within terms O( h3&).) The absence of a simple relationship 
between the free energy and the droplet distributions, in finite field, is actually less 
surprising than the existence of such a relationship in zero field. A relationship of this 
kind is a hallmark of a theory of non-interacting droplets. In fact our theory actually 
includes droplet interactions to the extent that it accounts for excluded volume effects. 
As discussed in I ( §  5.2) the effects of excluded volume in the calculation of the free 
energy density are precisely offset by the effects of droplet nesting so that the result 
( 5 . 1 3 ~ )  characteristic of the non-interacting limit is recovered. However, in the presence 
of a field this cancellation does not survive, and neither does the naive analogue of 
( 5 . 1 3 ~ ) .  

Finally, returning briefly to clarify a point discussed in I ( §  6) we may usefully set 
the scaling form (5.12 b )  alongside the result of purely phenomenological arguments. 
According to Binder (1976, equation (2.5)) 

n ( l ,  h, 6) = n’(hl’, l y ” ’ P S / ( )  (5.14) 

gives the number density of droplets (‘clusters’) of the phase (‘black’, say, in the colour 
metaphor of I )  opposite to that which is thermodynamically favoured (‘white’) and 
having volume (‘number of spins’) 1. The relationship can be brought into correspon- 
dence with equation (5.12b) if one sets the index y to unity and identifies, to within 
a scaling function, 1 = RdPp’“. However, thus identified, the variable 1 does not 
prescribe the true volume associated with a black droplet of scale size R (which actually 
scales as Rd-p’2v) but rather the total black volume within its boundaries including 
the contributions of nested black droplets. Accordingly the phenomenological order 
parameter sum rule (Binder 1976, equation (23a)) overcounts the contributions of 
black droplets; it appears to be consistent with the anticipated critical behaviour of 
the order parameter only because of a compensating failure to capture a subtle sum 
rule obeyed by the distribution function (cf I,  § 6). 
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6. An assessment of the theory 

In this paper we have considered a droplet theory of phase transitions originally 
formulated as a model of the configurational physics of Ising systems on the line of 
two-phase coexistence, and developed it to include the effects of an ordering field. 
We now turn to assess the reliability and utility of this extended theory. 

Our principal task in this regard is to establish to what extent, and in what sense, 
the theory is trustworthy. In addressing this question we must note immediately that, 
in a strict sense, the domain of validity of the theory is certainly limited by the d = 1 + E 

expansion on which it is based: at present we have little confidence that such expansion 
methods can be developed to yield, in d = 2, predictions for universal parameters as 
successful as the 4- d expansion results have proved in d = 3. Nevertheless, in the 
course of this paper (notably in 0 4) we have seen indications that the structure of the 
theory may have a degree of validity (or, at least, utility) which transcends the formal 
small-s limitation. We believe, however, that even though the latter limitations may 
be at least partially evaded by judicious reparametrisation of the theory, there remains 
inherent in the theory a further limitation which our arguments have thus far failed 
to expose. The limitation in question reflects the range of the parameters h and t (or, 
more naturally, h and 6 )  in which the approximations implicit in the theory are even 
formally justifiable. 

To explore this point let us recall the key elements of the picture underlying our 
calculations. The theory is constructed on the assumption that the coarse-grained 
configurations of Ising systems can be represented by patterns of droplets nested in 
such a way that the droplet boundaries are dilute. Loosely, the essential idea is that 
the largest droplet to be found housed within a droplet of some arbitrary scale size, 
R, will itself typically have a scale size small compared with R ; this idea finds more 
precise expression in the claim that the fractal dimension of a droplet lies close to its 
Euclidean dimension. This assumption is embodied in the use of the single-droplet 
partition function (2.12) in the anslysis leading to the multi-droplet partition function 
(3.6). It is thus at the heart of the theory. On the coexistence curve the validity of the 
assumption is assured by the smallness of the droplet concentration function G ( z ) ,  as 
discussed fully in I ,  § 5.4. However, away from the coexistence curve $( z )  is no longer 
solely responsible for controlling the droplet population: in finite field the droplet 
concentration is enhanced or suppressed, according to phase, by a factor exp[2hu( R ) ] .  
It is the balance between this volume factor and the surface tension factor ~ , b ( R / t )  
which determines the limits of validity of the theory. Consider the population of 
first-level droplets-those droplets of the unfavoured phase which are not nested within 
larger droplets: these droplets are the sole configurational ingredients of classical 
droplet theories. Since the population of these droplets is suppressed by the ordering 
field our treatment of them is correct (or at least as correct as it is in zero field). In 
contrast, however, the population of the droplets of the field-favoured phase nested 
immediately within the first-level droplets will be enhanced by the field to a degree 
which reflects both the magnitude of the field and the size of the nesting droplet, the 
latter being bounded by the size of the first-level droplet in which it is housed. The 
implication is clear: for large enough fields, or large enough first-level droplets, the 
population of nested droplets cannot be regarded as dilute. In effect we envisage that, 
as the field is increased, the favoured droplets (nested in any given first-level droplet) 
grow in number and ultimately percolate through the droplet in which they are housed. 
This picture is very similar to that advanced by Klein (1981) in a discussion of the 
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structure of the configurations responsible for spinodal decomposition. To assess its 
implications for the finite-field theory we must examine the extent of the contributions 
arising from the configurations which the theory treats incorrectly. There are two 
regimes to consider. 

Consider first the regime where h is small. By 'small' we mean, in the first instance, 
that h t d  << 1. In this regime the droplets of scale sizes R small compared with 6 carry 
exponential field-weighting factors which are of order unity: for these the dilute 
approximation is still acceptable. On the other hand, for droplets with scale sizes R 
larger than 6 the field-weighting factors are no longer of order unity and the dilute 
approximation fails for droplets of the favoured phase. However, these droplets are 
housed within a suppressed population of larger first-level droplets such that the overall 
field-weighting factor associated with a nested droplet configuration is less than unity. 
Thus the contributions of the non-dilute droplets to a thermodynamic average are of 
order $2 and, for R > 5, these contributions, and thus the errors which they introduce, 
are negligible. 

Consider now, however, the regime where h t d  is large. There will then exist a 
range of first-level droplets with scale sizes satisfying h- ' ld  < R < 6 which house nested 
droplets that are nor dilute, and whose contributions are not suppressed by an exponen- 
tially small surface tension factor. 

This analysis suggests that the theory can be trusted only in the regime h t d  << 1. In 
fact it is clear, both from the formal scaling structure of the theory and on physical 
grounds, that the effect of small droplets will be to produce the renormalised criterion 
h6d-P'"L{/" << 1. This condition presupposes a temperature below the critical point. 
Above the critical point there are no surface tension effects to control the population 
of large droplets (cf the flow of the renormalised temperature discussed in I, 9 8) and 
there is no region of the phase diagram where the droplet theory is controllable. We 
conclude that the theory developed here is restricted in its applicability to the region 
of the field-temperature plane close to the coexistence curve. 

We have not succeeded in putting these heuristic arguments on a secure analytic 
foundation. It is, however, possible both to detect the breakdown of the theory and 
to assess (reassuringly, it turns out) its severity by considering the form which the 
equation of state assumes precisely at the critical point. If, as suggested above, the 
theory breaks down at a finite value of the scaling variable y = h t d - P / " L f / "  its domain 
of validity in h should shrink to zero at the critical point. Indeed, there is a sense in 
which this is true. Specifically, in the 6 + CO limit one may deduce from equation (4 .26)  
that the order parameter Q assumes the form Q = Qc(x) with x = hv( Lo).  This form 
is consistent with (4 .22a) ,  from which one may readily obtain a differential equation 
satisfied by Qc. One then finds that, although this equation is consistent with the 
anticipated small-x behaviour ( Qc(x) - xi/ '  with S the exponent implied by equation 
(4 .6b )  and hyperscaling) the differential equation possesses a singularity at a finite 
value of x x, (of order E - ' )  which makes it impossible to implement the physically 
sensible boundary condition limx+m Qc(x) = 1. In principle, then, the droplet theory 
form of the equation of state does indeed fail at the critical point. There is, however, 
some reason to believe that in practice this failure is (or may be made) less severe 
than it first appears. In particular, we have investigated the differential equation for 
Qc in d = 2 when the singularity occurs at x, = 2.55 . . . . If we suppose that the mapping 
of the square lattice Ising model onto the droplet model prescribed by the assignment 
(4 .296)  holds, at least in some approximate fashion, even outside the critical region 
we find that this value of x, corresponds to an order parameter which is extremely 
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close to saturation. With this observation as motivation (if not justification), we have 
investigated the consequences of imposing on the differential equation for Qc the 
boundary condition Qc(xo) = 1 where xo< x,, thus evading the singularity at x,. Integrat- 
ing the differential equation numerically then yields, for small h, the result Q c -  1.18 
(hL:)”’. The amplitude of the power law is only very weakly dependent on the cut-off 
value xo: the stated value is appropriate in the range 1 < xo < 2.54. This result is in 
remarkably close agreement with the known behaviour of the square lattice Ising model 
(Gaunt and  Domb 1970) for which, with the identification (4.29b), Q,(h, &+a) = 
1.196(hL~)”’. It is also consistent with the limiting behaviour of Q ( h ,  Lo, 6) implied 
by the large-y extrapolation of our numerical results for the function & y )  (figure l ) ,  
which yields Q(h,  Lo, 6<< Lo) = (1.19*0.02)(hL~)1’s. 

Two comments are appropriate here. Firstly, the accord between our two separate 
calculations of the asymptotic finite-field critical behaviour reflects the fact that both 
calculations effectively discard the contributions associated with the large droplets 
which the theory does not control. In the critical point calculation discussed above, 
these contributions are eliminated by our choice of the boundary value xo from which 
the differential equation for Q, is integrated; in the calculation of o ( y )  discussed in 
g4.2 a similar approximation is made in our  imposition of the auxiliary boundary 
condition (4.25). Indeed, if the value of the cut-off parameter k (equation (4.25)) is 
increased much beyond that prescribed in the text, the numerical integration of (4.22a) 
rapidly breaks down. Secondly, it seems reasonable to infer from the success with 
which the two calculations do  in fact capture the ‘observed’ (series expansion) 
behaviour in the d = 2 lattice Ising model that the discarded contributions arising from 
these troublesome droplets (specifically, those with scale sizes in the range 
( h  < R < 6) are truly small. Presumably the contributions which such large- 
scale structures make to the order parameter and its derivatives is strongly suppressed 
by virtue of their highly ramified character (Klein 1981) which is realised (qualitatively 
but not controllably) within our framework in the high population of the field-favoured 
droplets which they will accommodate. 

Finally we offer a rather subjective view of the status and utility of the framework 
we have developed. It is clear that our calculations by no means constitute a complete 
first principles theory. We have already remarked on the need to circumvent the 
numerical limitations of the E = d - 1 expansion by somewhat ad hoc procedures. We 
should also recall that, as noted in I (see also Wallace and  Zia (1979)), our calculations 
d o  not capture the effects of interfacial overhangs which would be realised within our 
framework in partial droplet overlap effects (exponentially small in E = d - 1).  

On the other hand we believe that the present work, together with that of I ,  
constitutes considerably more than a pure phenomenology of the k i n g  universality 
class. It offers an  explicit theory of surface tension and the manner in which its effective 
strength evolves with the scale size of the interface in question. It provides a framework 
within which the behaviour of thermodynamic observables is explictly linked to the 
characteristics of the effective surface tension, manifested in our droplet population 
function. It provides qualitative insights (cf our discussion of the structure of the 
coexistence curve essential singularity). Its quantitative successes as regards the ther- 
modynamic behaviour in d = 2  (cf the equation of state) seem significant even in the 
light of the parametrisations we have had to make. Finally its predictive power extends 
considerably beyond the sphere of thermodynamic quantities: the form of the droplet 
population function has implications for, amongst other observables, the correlation 
function (for which exact results exist in d = 2: McCoy and  Wu (1973)) and  the 
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magnetisation distribution (which is accessible to computer simulation: Binder (1982)). 
These are the subject of continuing study. 
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